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Direct, efficient syntheses of the benzimidazo[2,1-a]isoquinoline ring system have been achieved with 2-
bromoarylaldehydes, terminal alkynes, and 1,2-phenylenediamines by a microwave-accelerated tandem
process in which a Sonogashira coupling, 5-endo cyclization, oxidative aromatization, and 6-endo cycliza-
tion can be performed in a single synthetic operation.

� 2009 Elsevier Ltd. All rights reserved.
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Scheme 1. Tandem approach to the synthesis of benzimidazo[2,1-a]-isoquinolines
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Scheme 2. Syntheses of o-alkynyl aromatic aldehydes.
Synthesis of the benzimidazo[2,1-a]isoquinoline ring system
has attracted a great deal of attention because of its biological
activities associated with the hybrid structure of isoquinoline1

and benzimidazole.2 Although some approaches to the ring system
have been reported,3 one of the most efficient methodologies in-
volves direct formation of the isoquinoline ring by metal-catalyzed
cyclization of alkynylbenzene derivatives. We have recently re-
ported the formation of 1,2-dihydroisoquinoline derivatives by In(-
OTf)3-catalyzed tandem cyclization of ortho-alkynylarylimines,4 in
which the starting alkynylbenzene derivatives were obtained by a
Sonogashira coupling from the corresponding aryl halides. Herein,
we report an efficient methodology for the construction of the
benzimidazo[2,1-a]isoquinoline ring system from 2-bromoarylal-
dehydes, terminal alkynes, and 1,2-phenylenediamines via a
microwave-accelerated tandem process5 in which a copper- and li-
gand-free Sonogashira coupling, 5-endo cyclization, oxidative aro-
matization, and 6-endo cyclization can be performed in a single
synthetic operation (Scheme 1).

Prior to the investigation of the tandem strategy, we decided to
tune the reaction conditions for each step, and we first examined
the Sonogashira coupling reaction using o-bromobenzaldehyde
derivatives 2. O-Alkynyl aromatic aldehydes 3 were obtained in
42–79% yields, indicating the tolerance of an aldehyde group in
the coupling conditions (Scheme 2).

Since the Sonogashira coupling proceeded well, we next exam-
ined the second annulation step, in which an isoquinoline ring and
an imidazole ring can be formed in a tandem fashion starting from
2-ethynylbenzaldehydes 3 and 1,2-phenylenediamines 4. At-
tempted cyclization using the protocol described by Dyker, who
used nitrobenzene both as an oxidizing agent and as a solvent,3a

resulted in lower yield of 1a (Table 1, run 1). Recently, metal-cat-
ll rights reserved.
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alyzed cyclization of o-alkynylarylimines has been reported as a di-
rect method for the synthesis of isoquinolines.4,6 We therefore
screened a range of metal-catalyst systems including In(OTf)3,

Pd(OAc)2/CuI, and Pd(OAc)2 at 120 �C (runs 2–4). Among them,
Pd(OAc)2 afforded the best result under aerobic conditions. Since
the lower yields obtained for 1a may be attributed to decomposi-
tion of the products due to prolonged heating, we decided to
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Table 1
Stepwise reaction of 3a with 4

CHO

+
catalyst

condition

solvent
reaction time

N

N13a 4a: X= H, 4b: X= Me

H2N

H2N

X

X X

X

Run Catalyst Mol (%) 4 Condition Solvent Time (h) 1 Yield (%)

1a — — 4a Heatc PhNO2 24 1a 41
2b In(OTf)3 10 4a Heatc DMF 24 1a 26
3b Pd(OAc)2, CuI 2 4a Heatc DMF 13 1a 27
4b Pd(OAc)2 2 4a Heatc DMF 10 1a 60
5b Pd(OAc)2 2 4a lWd DMF 5 1a 68
6b Pd(OAc)2 2 4b lWd DMF 5 1b 64

a Under nitrogen atmosphere.
b Under aerobic conditions.
c Oil bath temperature of 120 �C. Compound 3a (concentration of 0.5 M).
d Microwave irradiation at 120 �C. Compound 3a (concentration of 2.0 M).
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conduct the reaction under microwave irradiation with the inten-
tion of minimizing the quantity of solvents and accelerating the
reaction. In fact, the reaction was greatly accelerated with micro-
wave irradiation and was completed in 5 h to give 1a in improved
yield (run 5). This microwave irradiation reaction with dimethyl
derivative 4b also gave 1b in moderate yield (run 6).

Having in hand the optimized conditions for each step, we next
examined a one-pot synthetic strategy that would allow direct for-
mation of the benzimidazo[2,1-a]isoquinoline ring system. In an
attempt to improve the reaction conditions, we found that the
Table 2
One-pot preparation of benzimidazo[2,1-a]isoquinoline 1 under microwave
irradiation

N

N

R2

R1

1
X

X

Pd(OAc)2, base
DMF, µW (120 ºC)

2  + R2
4

Run 2 R1 R2 4 Base Time (h) 1 Yielda (%)

1 2a H Ph 4a Et3N 5.0 1e 68
2 2a H Ph 4a Cs2CO3 3.0 1e 70
2 2a H Ph 4a Cs2CO3 3.0 1e 70
3 2a H Ph 4a Bu4NOAc 0.5 1e 80
4 2a H Bu 4a Bu4NOAc 0.5 1c 77
5 2a H Bu 4b Bu4NOAc 0.5 1d 70
6 2a H Ph 4b Bu4NOAc 1.0 1f 76
7 2a H p-Tol 4a Bu4NOAc 0.5 1g 78
8 2b 4-Me Ph 4a Bu4NOAc 0.5 1h 81
9 2b 4-Me Ph 4b Bu4NOAc 0.5 1i 83

10 2c 5-F Ph 4a Bu4NOAc 0.5 1j 79

11

N Br

CHO
2d

Ph 4a Bu4NOAc 1.0 1k 73

12
CHO

Br

2e

Ph 4b Bu4NOAc 1.0 1l 79

13
S

Br

CHO

2f

Ph 4a Bu4NOAc 0.5 1m 77

a Conditions: Aldehyde 2 (0.5 mmol), alkyne (0.55 mmol), 1,2-diamine 4
(0.55 mmol), Pd(OAc)2 (0.01 mmol), and Bu4NOAc (1.0 mmol) were dissolved in
DMF (100 ll), (concentration of 5.0 M). Microwave irradiation (120 �C, 200 W).
one-pot reaction of compounds 2a, phenylacetylene, and 1,2-phen-
ylenediamine 4a can proceed smoothly even in the absence of CuI
and PPh3 to give 1e in 68% yield under microwave irradiation
(Table 2, run 1).7,8 Furthermore, both Cs2CO3 and tetrabutylammo-
nium acetate (Bu4NOAc) were effective as bases, the latter being
more effective, allowing for complete conversion to 1e within
0.5 h (runs 2 and 3). Bu4NOAc might facilitate the reduction of
Pd(OAc)2 to a catalytically active Pd(0) species (Pd nanoparticle).9

To determine the general utility of this procedure, we applied these
improved conditions to other aldehydes 2, terminal alkynes, and
1,2-phenylenediamines 4. Change in the electronic nature of sub-
stituents on the aromatic rings of the aldehydes and on alkynes
did not affect the efficiency of the reaction, giving the expected
hybrid compounds 1 in moderate yields in the presence of DMF
(concentration of 5 M) after 0.5–1.0 h at 120 �C and 200 watts
(W) (runs 4–13).

Finally, we briefly examined the reactions using aminophenol 5
and aminothiophenol 6 to see whether heteroatoms other than
nitrogen can participate in the tandem reaction. When compounds
5 and 6 were treated with phenylacetylene and 1,2-phenylenedi-
amine under similar reaction conditions, only dibenzoxazepine 7
and dibenzothiazepine 8 were obtained in 82% and 77% yields,
respectively (Scheme 3).

In summary, we have demonstrated a new and concise method
for one-pot construction of benzimidazo[2,1-a]isoquinolines start-
ing from 2-bromoarylaldehydes, terminal alkynes, and 1,2-pheny-
lenediamines by a microwave-promoted tandem process that
involves imine formation, copper-ligand-free Sonogashira reaction,
5-endo-trig cyclization, oxidative aromatization, and 6-endo-dig
cyclization reaction.
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